
www.manaraa.com

1

A GUI Approach to Programming of TMO Frames and
Design of Real-Time Distributed Computing Software

K. H. (Kane) Kim and Seok-Joong Kang
Dream Lab, University of California

Irvine, CA 92697, USA
{khkim, seokjook} @uci.edu, http://dream.eng.uci.edu/

Abstract

An advanced high-level approach for programming of
real-time distributed computing applications, the TMO
(Time-triggered Message-triggered Object) programming
and specification scheme, has been enabled without
creating any new language or compiler. Instead, a
middleware system named the TMO Support Middleware
(TMOSM) and an API that wraps around the execution
support services of TMOSM have been established. An
approach enabling further reduction of the labor in TMO
programming is to let the programmer use a GUI to build
structural frames of application TMO networks. The
supporting tool called the Visual Studio for TMO
(ViSTMO) consists of a GUI part for interactive design of
TMO-network structures and a part for automated
generation of C++ TMO code-frameworks. The TMO
scheme contains mechanisms enabling efficient design of
autonomy-rich structures of application systems and
ViSTMO provides GUIs for programming the use of
those mechanisms among others. The recent expansion
and refinement of the functionality of and the
implementation techniques used in ViSTMO are
discussed in this paper.
Keywords: TMO, real time, time-triggered, computing,
autonomy, GUI, automated generation, code-frameworks,
ViSTMO.

1. Introduction

Programming of real-time (RT) distributed
computing application software is nowadays a steadily
growing branch of software engineering [Kim97,
OMG01, OMG02, Sch00, Sel00]. Such programming has
often been an order-of-magnitude harder than the long-
practiced programming of non-real-time programs
involving no network communications. To rectify this
situation, new-generation methods and tools need to be
established in sound forms enabling abstract styles of
programming without depriving from the programmer
essential abilities for controlling timely interactions and
data flow among constituent program parts.

The Time-triggered Message-triggered Object
(TMO) programming scheme is among the advanced
high-level approaches to RT distributed programming
[Kim97, Kim00, Kim02]. The support tools for the TMO

scheme can be based on well-established object-oriented
(OO) programming languages such as C++, C#, and Java
and on ubiquitous commercial RT OS kernels including
derivatives of Linux or even on the Microsoft Windows
family of OS kernels. TMO is a natural, syntactically
small, and semantically powerful extension of the
conventional object model(s) and typical OO
programmers can adopt it with relatively small efforts.
The TMO scheme enables structuring of every
conceivable distributed computing application in the form
of a TMO network. Also, the TMO scheme contains
mechanisms enabling efficient design of autonomy-rich
structures of application systems [Kim95, Kim00].

Moreover, TMO structuring supports various phases
of system engineering, from abstract designs to detailed
implementations. In addation, TMO is an effective
mechanism not only for variable-degree abstraction of
distributed RT systems under design but also for variable-
accuracy RT simulation of the application environments
[Kim97].

We have been enabling TMO programming without
creating any new language or compiler. Instead, a
middleware system named the TMO Support Middleware
(TMOSM) and an API that wraps around the execution
support services of TMOSM have been provided [Kim99,
Kim00]. This API was named the TMO Support Library
(TMOSL). Also, during the past two years we have been
working on a GUI tool for interactive design of TMO-
network structures and automated generation of code-
frameworks to simplify the jobs of TMO programmers.
The potential benefits of using GUIs in constructing
large-scale programs were indicated by numerous
researchers in the past [Mol01, Nie00, Ros02, Sof].

The GUI tool that is evolving in the authors’ lab has
been named the Visual Studio for TMO (ViSTMO).
ViSTMO is a graphic-design-oriented tool that helps
TMO designers and programmers to build application
TMO networks efficiently. ViSTMO provides GUIs for
programming autonomy-rich structures of application
systems among others. The first prototype that
demonstrates the feasibility and potential benefits of
ViSTMO in a convincing manner has been implemented.
Our experiences with ViSTMO have revealed that this
GUI-based code-framework generation approach can lead
to significant improvement of efficiency in designing and
programming of application TMO networks. The field of
high-level RT distributed programming is a young one, let

Proceedings of the Sixth International Symposium on Autonomous Decentralized Systems (ISADS’03)

0-7695-1876-1/03 $17.00 © 2003 IEEE

Proc. ISADS (6th Int'l Symp. on Autonomous Decentralized Systems),
April 2003, Pisa, Italy, published by IEEE CS Press, pp. 53-60.

www.manaraa.com

2

alone the field of GUI-based RT distributed
programming. Therefore, we expect that the
functionality of ViSTMO will continue to
evolve for some years to come.

In this paper, the three most recent
expansions of the functionality of ViSTMO
are discussed. They are:
1) generation of code-frameworks linking a
client to a server TMO when the user draws
a line from the icon representing the client to
icon representing the server;
2) packaging of all the code-frameworks of
the TMOs to be hosted on a node into a
single loadable package when the user
graphically assigns a set of TMOs to a node,
i.e., draws lines linking the icon representing
a node to all the icons representing the
TMOs to be hosted on that node; and
3) support for design of and generation of
code-frameworks for logical multicast
channels which can be used for loose
coupling among various TMOs.

These enable considerable savings of the
efforts of TMO network programmers. The
techniques for implementing the parts of the
code-frame generator related to these new
features are also discussed.

This paper is organized as follows. A brief overview
of the basic features of the TMO programming scheme is
first given in Section 2. The features enabling efficient
design of autonomy-rich structures is reviewed in Section
3. Then, the recent expansion and refinement of
functionality of and the implementation techniques used
in ViSTMO are discussed in Section 4. Section 5
concludes the paper.

2. Basic features of the TMO programming
and specification scheme

The TMO scheme was established in early 1990's

with the skeleton of a concrete syntactic structure and
execution semantics to support economical reliable design
and implementation of RT distributed computing systems.
It has been enhanced in several steps since then.

TMO is a natural, syntactically simple, and
semantically powerful extension of the conventional
object(s) [Kim97, Kim00]. As depicted in Figure 1, the
basic TMO structure consists of four parts:

ODS-sec = object-data-store section: list of object-
data-store segments (ODSS's); Each ODSS is a
group of data members and is a unit that can be
locked for exclusive use by one method execution at
a time as well as for shared use by multiple
concurrent method executions which perform read-
only operations on the data members contained.
EAC-sec = environment access-capability section:
list of gate objects providing efficient call-paths to

remote object methods, logical communication
channels, and I/O device interfaces;
SpM-sec = spontaneous-method section: list of
spontaneous methods;
SvM-sec = service-method section.
Major features are summarized below.

(a) Distributed computing component: The TMO is a
distributed computing component and thus TMOs
distributed over multiple nodes may interact via remote
method calls. To maximize the concurrency in execution
of client methods in one node and server methods in the
same node or different nodes, client methods are allowed
to make non-blocking types of service requests to server
methods. Moreover, the designer of client methods may
impose deadlines for result returns.
(b) Clear separation between two types of methods: The
TMO may contain two types of methods, timetriggered
(TT-) methods (also called the spontaneous methods or
SpMs), which are clearly separated from the conventional
service methods (SvMs). The SpM executions are
triggered upon reaching of the RT clock at specific values
determined at the design time whereas the SvM
executions are triggered by calls from clients which are
transmitted by the execution engine in the form of service
request messages. Moreover, actions to be taken at real
times which can be determined at the design time, can
appear only in SpMs.
(c) Basic concurrency constraint (BCC): This rule
prevents potential conflicts between SpMs and SvMs and
reduces the designer's efforts in guaranteeing timely
service capabilities of TMOs. Basically, activation of an
SvM triggered by a message from an external client is
allowed only when potentially conflicting SpM executions

Figure 1. The Basic Structure of TMO (Adapted from [Kim97])

Proceedings of the Sixth International Symposium on Autonomous Decentralized Systems (ISADS’03)

0-7695-1876-1/03 $17.00 © 2003 IEEE

www.manaraa.com

3

are not in place. An SvM is allowed to execute only when
an execution time-window big enough for the SvM that
does not overlap with the execution time-window of any
SpM that accesses the same ODSSs to be accessed by the
SvM, opens up. However, the BCC does not stand in the
way of either concurrent SpM executions or concurrent
SvM executions.
(d) Guaranteed completion time of the server (i.e., an
SvM of a server TMO) and the result return deadline
imposed by the client.

Triggering times for SpMs must be fully specified as
constants during the design time. Those RT constants
appear in the first clause of an SpM specification called
the autonomous activation condition (AAC) section. An
example of an AAC is "for t = from 10am to 10:50am
every 30min start-during (t, t+5min) finish-by t+10min"
which has the same effect as {"start-during (10am,
10:05am) finish-by 10:10am", "start-during (10:30am,
10:35am) finish-by 10:40am”}.

3. Structuring of highly autonomous real-
time distributed computing systems as TMO
networks

The autonomy of various subsystems in complex RT

distributed computing systems is a highly desired
attribute. Highly autonomous subsystems enable
concurrent and largely independent testing/verification
and maintenance of the subsystems. A challenge in
designing distributed computing systems is then to
maximize the degree of autonomy of the subsystems
while achieving the objective of efficient cooperative
computing.

The TMO scheme contains several mechanisms
enabling efficient design of highly decentralized
application systems.

3.1 Service timing autonomy and temporal
firewall

TMO methods have guaranteed completion times

(GCTs) as their attributes. Additionally, SpMs have
declarations of start time-windows. These make the
worst-case timings of services provided by TMOs to be
highly predictable.

SpMs are highly autonomous in the sense that their
executions start in the absence of any client's requests and
are not interfered by SvM executions under the BCC.
Moreover, one can structure a TMO in which SvMs play
the roles of "receptionists" which receive service requests
and then convert them into work orders to be put in a
queue in the ODS which is examined regularly by a
"master" SpM. Essentially, the master SpM does the
substantive computing work requested by the clients. In
such a TMO, the master SpM has some freedom in
sorting the queue of work orders and choosing the start
time of handling each order. Such a TMO possesses a
certain degree of service timing autonomy [Kim95].

The TMO scheme is aimed for enabling design-time
guaranteeing of an end-to-end delay bound, i.e., a bound
on the time interval from the instant at which a significant
input event (e.g., a significant sensor value or message
from the application environment) occurs to the instant at
which a corresponding output action (e.g., an actuator
command or a database update) does. GCTs of SvMs are
known to and used by the designers of client TMO
methods in deriving the GCTs of the client methods.
Therefore, the designer of an application TMO network
can visualize how a worst-case end-to-end delay will be
composed of the GCTs of various contributing TMO
methods.

The features mentioned above enable highly
concurrent design and implementation of multiple TMOs
and relatively easy composition of integrated TMO
networks.

3.2 Relocation autonomy and Real-time Multicast
and Memory-replication Channel (RMMC)

TMOs possess relocation autonomy, i.e., autonomy

in choosing their locations. A TMO execution engine
consists of a group of networked computing node
platforms (hardware nodes plus OS kernels) and
instantiations of the TMO Support Middleware
(TMOSM) running on the node platforms. The location
of each TMO is a global knowledge within the TMO
execution engine. TMOs and SvMs are referenced by
their location-independent global names. If a TMO is
relocated, other TMOs which depend on the services of
the relocated TMO are not impacted except for possible
changes in the response times of the relocated TMO.

Another mechanism in the TMO scheme provides
further options for exploiting autonomy-rich structures.
In addition to the interaction mode based on remote
method invocations, TMOs can use another interaction
mode in which messages can be exchanged over logical
message channels of which access gates are explicitly
specified as data members of involved objects. The
advanced type of such channel facility adopted in the
TMO scheme is called the Real-time Multicast and
Memory-replication Channel (RMMC) [Kim00], of
which an earlier version was called the HU data field
channel [Kim95] and was in turn an extension of the data
filed channel [Mor82, Mor86].

For example, access gates for two RMMCs (RMMC1
and RMMC2) can be declared as data members of each of
the three remotely cooperating RT objects (TMO1,
TMO2, and TMO3) during the design time. Once TMO1
sends a message over RMMC1, the message will be
delivered to the buffer allocated inside the execution
engine for each of the three RT objects. Later during their
execution, certain methods in TMO2 and TMO3 can pick
up those messages by sending the requests through their
RMMC1 gates to their execution engines. In many
applications, this interaction mode leads to better
efficiency than the interaction mode based on remote

Proceedings of the Sixth International Symposium on Autonomous Decentralized Systems (ISADS’03)

0-7695-1876-1/03 $17.00 © 2003 IEEE

www.manaraa.com

4

method invocations.
 An RMMC can be implemented over point-to-point

networks as well as over broadcast-enabled bus networks.
Many RMMCs can be multiplexed on a given physical
communication network.

In case an RMMC is dedicated to the carrying of
requests for a particular type of services and relevant
results being returned, the client TMOs which are
connected to the RMMC and are users of the services, do
not even need to know the names of the server TMOs or
their SvMs. A client TMO can just load a request with
appropriate parameters onto the RMMC and later pick up
the results from the RMMC. Therefore, there is further
autonomy on the part of the server TMOs in such an
application TMO network.

The RMMC scheme supports not only conventional
event messages but also state messages based on
distributed replicated memory semantics [Kop97]. A
state message carries information to be stored in a fixed
memory location in each receiver corresponding to the ID
of the state message.

A state message’s ID represents a group of replicated
memory units, each capable of holding the information
carried in the state message and belonging to a different
receiver. A state message producer timestamps the
message at message-production time. Each receiver reads
the content of its state message memory through a
relevant gate at a convenient time. This means that the
producer may update the contents of the state message
memory units at a higher frequency than the frequency at
which a certain receiver reads the content of its state
message memory. A state message is thus typically used
to share the periodically observed state information about
a dynamic state-varying item, like a car’s position. The
state message mechanism facilitates loose coupling
between senders and receivers.

4. ViSTMO : Architecture and
implementation techniques

ViSTMO provides the Graphics-based Design Editor
that supports interactive design of application TMO
networks. It also has the Code-framework Generator that
generates code-frameworks based on the information
provided by a programmer using the Graphics-based
Design Editor. Figure 2 shows major components and
functionality of ViSTMO.

4.1. Graphics-based Design Editor

ViSTMO provides user-friendly GUIs for application
TMO network programmers. Primarily by filling the
empty fields in dialog boxes, programmers can produce
designs of application TMO networks that are complete
except for function bodies of object methods. For
example, a programmer can add/revise/delete information
about various parts of a TMO using the dialog box
depicted in Figure 3. Such information represents the
properties of the TMO. The screen in Figure 3 shows that
the TMO component, Radar, which is to be realized by
instantiating the automatically named class, CRadar,
contains among other things an SpM, SpM0_CRadar. If
the user selects SpM0_CRadar and pushes the button
”Revise” in Figure 3, then a window that allows the user
to specify some detailed properties of SpM0_CRadar
opens up.

ViSTMO can also check certain design errors or
design inconsistencies and report them to the
programmer. The important advantages of using the
Graphics-based Design Editor of ViSTMO are as follows.

(1) Minimize the amount of data which a
programmer should input: A programmer does not need
to create codes for the default constructors of ODSS
classes and TMO classes. Once the programmer inputs
the essential parameters of ODSS and TMO classes, the
default constructors for them can be generated by
ViSTMO. In the case of building an SpM, the essential
parameters that the user needs to input are: SpM name,
the selections (via mouse) of the ODSSs to be used and
the access modes (Read only / Read and Write / No
access) of the SpM for the selected ODSSs, timing
specification (i.e., AAC), the selections (via mouse) of the
remote SvM call capabilities to be used and the types of
service calls to be made, and the selection (via mouse) of
the multicast channels (i.e., RMMCs) to be used. Then
ViSTMO will generate C++ code-frameworks including
the SpM definitions each of which must be completed
manually by the programmer writing the body of the
SpM.

(2) Automatic detection of error / inconsistencies in
timing specification: The inconsistency in the timing
specifications of SpMs and SvMs can be detected by
ViSTMO. For example, the guaranteed completion time
(GCT) of an SvM should be less than the deadline set by a
client for result return. However, this capability is yet to
be implemented.

(3) Checking parameter type of an SvM: The
parameter for any SvM must be organized as one of a Figure 2. Major components and functionality of ViSTMO

Graphics-based
design editor

Code-framework
Generator

Requirement analysis and Design

Code generation

Compiler / Debugger
(MS Visual Studio)

Timing
Analyzer

ViSTMO

Other tools

Coding and debugging Timing analysis

- Property
of each
TMO

- Method
impleme-
ntation

- C++ code for
TMO class definitions

- TMO config.ini files,

Visual Studio work
space, and projects
files

- TMO network
diagram

- Property of
each TMO

Graphics-based
design editor

Code-framework
Generator

Requirement analysis and Design

Code generation

Compiler / Debugger
(MS Visual Studio)

Timing
Analyzer

ViSTMO

Other tools

Coding and debugging Timing analysis

- Property
of each
TMO

- Method
impleme-
ntation

- C++ code for
TMO class definitions

- TMO config.ini files,

Visual Studio work
space, and projects
files

- TMO network
diagram

- Property of
each TMO

Proceedings of the Sixth International Symposium on Autonomous Decentralized Systems (ISADS’03)

0-7695-1876-1/03 $17.00 © 2003 IEEE

www.manaraa.com

5

single structured type (i.e., “struct” in C++). ViSTMO
forces the SvM designer
to create the structured
parameter type. It also
forces the designer of a
client to use the
parameter type defined
by the SvM designer in
creating an actual
parameter set. In this
way, ViSTMO ensures
type consistency of the
parameter set passed
between the SvM and its
clients.

Three most recently
realized features of the
Graphics-based Design
Editor are described
below.

(1) Automatic
generation of code-
frameworks linking
clients to server TMOs
under the guides of
drawing inputs: In order
to link a client to a
server TMO, a
programmer should push
the add button in the

“access capability (to other TMOs)” section in a dialog
box for defining the properties of the client TMO shown
in Figure 3. The programmer should next select the name
of a server TMO and the name of a server SvM. Later
when a client method, SpM or SvM, is created, the
programmer should specify one or more types of service
requests to be made. The service request types are
discussed in the next section. These are the steps
involved in creating a service-call link from a client to a
server TMO with the previous version of ViSTMO.

However, a recently added feature allows the
programmer to connect a method in a client TMO and a
method in a server TMO by drawing a link between them.
As soon as a line is drawn, a pop-up window will open up
to induce the programmer to fill in a service request type.
Figure 4 shows a pop-up window just after the
programmer drew a line linking a client method,
SpM0_Cradar in Radar, and a server method,
ReceiveRequestFromRadar, in the server TMO which is
Environment. Also, the programmer can verify the
service-call link between two TMOs by double-clicking
the line between them on the screen. Once the
programmer double-clicks the line, a pop-up window
almost identical to that in Figure 4, will open up showing
the name of the client TMO, the name of the client
method, the name of the server TMO, the name of the
server method, the service request type, and the parameter
structure type of the server method. Appropriate code-
frameworks for service requests and result returns will

Figure 3. A dialog box for the creation of a TMO

Figure 4. A dialog box for linking a client to a server TMO

 This was drawn
and the mouse
was released.

[2] [3]

Environment

EnvironmentODSS

SpM_CEnvironment

ReceiveRequestFromRadars

Reporter

ReporterODSS1
ReporterODSS2

SpM_CReporter

ReceiveRequestFromRadars

Radar

RadarODSS

SpM_CRadar

SpM0_CRadar

ReceiveRequestFromRadars

Proceedings of the Sixth International Symposium on Autonomous Decentralized Systems (ISADS’03)

0-7695-1876-1/03 $17.00 © 2003 IEEE

www.manaraa.com

6

then be generated by the Code- framework Generator.
Such code-frameworks will be discussed in section 4.2.

(2) TMO-to-node assignment: With this recently
added feature the programmer can assign a TMO to a
specific node by drawing a line linking the TMO and the
icon that represents the node. For example, a line can be
drawn in Figure 4 to link Reporter TMO to an icon
representing node2. The information on the TMO-to-
node assignment will be used by the Code-framework
Generator during code generation. The Code-framework
Generator will generate a separate main.cpp file for each
node and a separate TMO environment configuration file
named “config.ini” that is node-dependent. This
config.ini file contains information such as the number of
nodes in the distributed computing network, master node
IP address, etc.. For more detailed information about
config.ini file, please refer to the TMO Programming
Manual [TMO02].

(3) RMMC-access creation: A GUI for interactive
design of RMMC and connection of TMO methods to
RMMCs was also a recent addition to ViSTMO. In order
to create an RMMC-access class, the programmer should
provide the following information.

- Name of RMMC-access class
- Name of the event message structure type and its

data members
- Name(s) of state message variable(s), name of

each state message structure type and its data
members.

Preliminary experiments have indicated that
ViSTMO can relieve the TMO programmer substantially
of the burden of the manual coding.

4.2 Code-framework Generator

TMO

programming is
enabled by
provision of a set
of APIs that wrap
around the
execution support
services of
TMOSM rather
than a new
programming
language. This
API set is called
the TMO Support
Library
(TMOSL).
TMOSL contains
C++ classes which
serve as base
classes during the
course of defining
TMOs and some
of their

components, i.e., ODSSs, TMO-access gates, etc..
Therefore, the TMO programmer who does not have
access to ViSTMO creates application-specific ODSS
classes, TMO classes, etc., by inheriting base classes in
TMOSL first.

The Code-framework Generator produces a C++
framework of each application TMO designed with the
aid of the Graphics-based Design Editor. This C++ code-
framework includes TMO class definitions and full details
of constructors each of which includes the registration of
the TMO and its methods with the execution engine. The
main() function containing instantiations of TMOs, gate
objects, etc., is also generated. The only thing that the
TMO programmer needs to do in order to complete the
implementation of a TMO is to add function bodies into
this framework.

Since TMO programming is enabled by provision of
TMOSL rather than a new programming language
devised to support the TMO, some TMO-specific codes
that are not needed in conventional OO programming and
are related to defining and passing onto TMOSM relevant
timing requirements, ODSS access requirements, and
other parameters, cannot take strongly irredundant
concise forms. On the other hand, the Graphics-based
Design Editor takes essential information from the human
designer in strongly irredundant concise forms. The
Code-frame Generator generates a C++ TMOSL code-
framework, which takes a somewhat redundant form,
from the maximally concise information coming from the
Graphics-based Design Editor. The TMO-specific code-
frameworks contain codes for the following;
(1) ODSS registration: TMO execution engine needs to

support dynamic locking and release by TMO
methods of ODSSs. So it should do some

void main() {
 StartTMOengine();
 TMOGateClass Gate_for_Reporter_ReporterReceiveReportFromRadars ("Reporter",

"ReporterReceiveReportFromRadars", tm4_DCS_age(DCS_PLUS_5_SEC));
 TMOGateClass Gate_for_Environment_ReceiveRequestFromRadars ("Environment",

"ReceiveRequestFromRadars", tm4_DCS_age(DCS_PLUS_5_SEC));
 AACclass AAC1 (tm4_DCS_age(WARMUP_DELAY_SECS), tm4_DCS_age(UNTIL_DCS_PLUS_2_HOURS),
 EVERY_1_SECOND, EST_1_MILLISECOND, LST_5_MILLISECOND, DEADLINE_MSEC_SpM);
/************************* TMO :: Radar *************************/
 SpM_RegistParam Radar_SpM0_CRadar_Register_Info;
 Radar_SpM0_CRadar_Register_Info.build_regist_info_AAC(AAC1);
 CRadar Radar ("Radar" /* TMO Name */, DCS_PLUS_5_SEC /* TMO Start time */,
&Gate_for_Environment_ReceiveRequestFromRadars, &Gate_for_Reporter_ReporterReceiveReportFromRadars,
 Radar_SpM0_CRadar_Register_Info /* SpM Register Para. for SpM0_CRadar */);
/************************* TMO :: Environment *************************/
 SvM_RegistParam Environment_ReceiveRequestFromRadars_Register_Info;
 _tcscpy (Environment_ReceiveRequestFromRadars_Register_Info.Name, "ReceiveRequestFromRadars");
 Environment_ReceiveRequestFromRadars_Register_Info.GuaranteedCompletionTime = GCT_20_MILLISEC;
 Environment_ReceiveRequestFromRadars_Register_Info.PipelineDegree = DEFAULT_SvM_Pipelinedegree_3;
 Environment_ReceiveRequestFromRadars_Register_Info.MaxInvocations =

DEFAULT_SvM_MIR_5_TIMES_PER_SEC;
 SpM_RegistParam Environment_SpM0_CEnvironment_Register_Info;
 Environment_SpM0_CEnvironment_Register_Info.build_regist_info_AAC (AAC1);
 CEnvironment Environment ("Environment" /* TMO Name */, DCS_PLUS_5_SEC /* TMO Start time */,
 Environment_ReceiveRequestFromRadars_Register_Info /* SvM Register Para. */,
 Environment_SpM0_CEnvironment_Register_Info /* SpM Register Para. for SpM0_CEnvironment */);
 MainThrSleep(); }

Figure 5. C++ main function generated by the Code-framework Generator

Proceedings of the Sixth International Symposium on Autonomous Decentralized Systems (ISADS’03)

0-7695-1876-1/03 $17.00 © 2003 IEEE

www.manaraa.com

7

bookkeeping for each ODSS.
(2) TMO registration

a. SpM related: TMO execution engine needs some
information about SpM, e.g., timing
specifications (AAC), ODSSs needed, etc., to do
execution scheduling including concurrency
control.

b. SvM related: TMO execution engine needs some
information about SvM, e.g., GCT and ODSSs
needed, to do execution scheduling including
concurrency control.

c. TMO related: TMO network configuration
manager needs this information to support
interactions among remote TMOs.

4.2.1 Generation of a main function. Figure 5
shows a sample C++ main function generated by the
Code-framework Generator. In this example, the main
function starts TMOSM by calling the TMOSL API,
StartTMOengine(). Then two gate objects are constructed
and the constructor of each gate tells the execution engine
to establish an efficient path to the remote SvM, keep the
path inaccessible until the time, Service_Start_Time,
arrives, and then make the path usable. A client TMO can
use these gate objects to access
ReporterReceiveReportFromRadars SvM in Report TMO
and ReceiveRequestFromRadars SvM in Environment
TMO, respectively. An example of use of a gate object
will be discussed in the next section. Next, an AAC
object is constructed by using the specification of when a
SpM should be activated for its one-shot or periodic
execution, when it should be deactivated, the interval
between periodic execution-starts, earliest start-time in
each execution round, and latest start-time in each
executions round, and GCT of each round.

Finally, two TMOs, Radar and Environment, are
constructed by using the specification of TMO name,
TMO start-time, gate objects that will be used
(Environment TMO does not use any gate object), and
timing specifications for two SpMs and an SvM (Radar
TMO does not have any SvM). In
the case of the timing specification of
an SvM, the programmer should
specify the name of the SvM, a GCT,
a pipelining degree (i.e., the number
of invocations of the same SvM that
can progress concurrently), and a
maximum invocation rate. Direct
manual coding of the statements in
Figure 5 would be a lot more
burdensome to the TMO network
programmer than obtaining the main
function through interactive use of
ViSTMO.
4.2.2 Generation of the code-
framework for a TMO class
definition. Figure 6 shows the
constructor of CRadar class and the

framework of the body of the SpM of CRadar class,
SpM0_CRadar generated by the the Code-framework
Generator. In this example, the generated code-
framework for SpM0_CRadar contains declarations of
parameters and prototypes of service request calls through
the gates for the other two TMOs, Environment TMO and
Reporter TMO. These codes, which were generated by
the Code-framework Generator based on the information
provided by a programmer through the Graphics-based
Design Editor, form an incomplete body of the SpM.

It shows that selection of a service request (SR) type
after drawing a link from Radar TMO to Environment
TMO and similar selection for a link to Reporter TMO
during the graphics-based design editing results later in
the generation of (1) C++ codes for saving pointers to
relevant gate objects as data members of CRadar, (2) the
codes for declaration of relevant parameters, and (3) the
prototype codes for SR call of the selected type. In
SpM0_CRadar in Figure 6, gate0 object is used to make a
non-blocking SR to ReceiveRequestFromRadars SvM of
Environment TMO. The first parameter of this SR is a
reference to a data structure to be passed to the SvM, and
the second one is the size of this data structure. The third
one will carry a time-stamp to be set by the execution
engine running this client upon completing the execution
of the non-blocking SR. The client TMO can use this
time-stamp to retrieve the service results coming from the
SvM. Gate objects provide flexible interfaces for users to
make various kinds of SRs to server TMOs, such as non-
blocking SR, blocking SR, non-blocking result retrieval,
and blocking result retrieval, etc..

Neither a C++ compiler nor TMOSL can access the
source codes of all the TMOs engaged in cooperative
distributed computing. Therefore, there are no
mechanisms in TMOSM or TMOSL for checking the type
consistency. Since ViSTMO is designed to access the
essential designs of all the TMOs engaged in a distributed
computing application, it has a wider vision than a
conventional C++ compiler does. Therefore, it can check

#include "CRadar.h"
void CRadar::SpM0_CRadar(MicroSec) {

tmsp TimeStamp0; ParaFromRadarsToEnvType para_ParaFromRadarsToEnvType;
 ParaFromRadarsToReporterType para_ParaFromRadarsToReporterType;
 // TO DO : Add your implementation here
 gate0->NonBlockingSR (¶_ParaFromRadarsToEnvType,
 sizeof(para_ParaFromRadarsToEnvType), TimeStamp0);
 gate1->OnewaySR (¶_ParaFromRadarsToReporterType,

sizeof(para_ParaFromRadarsToReporterType)); };
CRadar::CRadar(char * TMO_name, tms TMO_start_time, TMOGateClass * para_gate0,
 TMOGateClass * para_gate1, SpM_RegistParam SpM_RegistParam_of_SpM0_CRadar)
{ gate0 = para_gate0; gate1 = para_gate1;
 /* Declare an ODSS to be in the group of ODSSs to be accessed by SvM */
 SpM_RegistParam_of_SpM0_CRadar.build_regist_info_ODSS (RadarODSS1.get_id(), RW);
 /* Preparation of the registration parameters related to SpM */
 if (!Register_SpM((PFSpMBody)SpM0_CRadar, &SpM_RegistParam_of_SpM0_CRadar))

TMOSLprintf("SpM register failed :: SpM0_CRadar\n");
 /* TMO Registration */
 TMO_RegistParam TMO_RegistInfo; _tcscpy(TMO_RegistInfo.Name, TMO_name);
 TMO_RegistInfo.StartTime = TMO_start_time;
 if (!Register_TMO(&TMO_RegistInfo))

TMOSLprintf("TMO register failed :: %s \n", TMO_name); };

Figure 6. A sample *.cpp file generated by the Code-framework Generator

Proceedings of the Sixth International Symposium on Autonomous Decentralized Systems (ISADS’03)

0-7695-1876-1/03 $17.00 © 2003 IEEE

www.manaraa.com

8

the type consistency between the formal parameters
defined as a part of an SvM and the actual parameters
created in a client TMO. In the case of Figure 6,
ViSTMO can ensure that a client TMO makes a SR with a
parameter of type ParaFromRadarsToEnvType, which
was created as a part of the definition of the server SvM,
ReceiveRequestFromRadars. Also, in both Figure 5 and
Figure 6, the words in bold-face are input by the
programmer only once through the Graphics-based
Design Editor. These examples show how ViSTMO can
increase the programming efficiency and the system
reliability.

6. Discussion and Conclusion

Fully manual coding of TMOs involves quite a bit of

repeated routine work. ViSTMO provides the user-
friendly Graphics-based Design Editor with which
programmers can input essential information in concise
and efficient manners. It helps minimizing the number of
errors that can be made by the programmers and
eliminating or minimizing the amount of redundant data
that need to be provided by the programmers. The design
methodology supported is of a top-down stepwise
refinement type discussed in [Kim97]. Since graphics-
based representations of TMO network designs are much
easier to understand than most of the purely character-
based representations, ViSTMO also greatly enhances
maintainability of application TMO networks.

An important advantage of ViSTMO is that it
minimizes the gap between design and programming.
Most modeling tools devised to help distributed
programmers are based on highly abstract modeling
approaches [Ros02]. On the other hand, ViSTMO
supports smooth transitions from designs to executable
codes by generating not only class frameworks but also
prototype codes for remote method calls, etc. ViSTMO
can be extended to support design and implementation of
networks of TMOs running on multiple types of
platforms.

Currently, several versions of TMO execution
engines, such as TMOSM/XP (TMOSM layered on
Windows XP and Windows 2000) and TMOSM/CE
(TMOSM layered on Windows CE), are available.
TMOSM can also run over different communication
mechanisms, such as SOCKET, CORBA ORBs (Object
Request Brokers), and DCOM facilities. There are slight
but inevitable differences among the middleware layered
on different platforms and communication protocols.
ViSTMO can play a significant role in eliminating most
differences among various TMO execution engines from
the concerns of TMO programmers. Some limited
experiments with ViSTMO in RT application design and
implementation have been conducted with encouraging
results.

 Acknowledgements: The research work reported here was
supported in part by the NSF under Grant Numbers 02-04050

 (NGS) and 00-86147 (ITR), and in part by the US DARPA
under Contract F33615-01-C-1902 monitored by AFRL. No part
of this paper represents the views and opinions of any of the
sponsors mentioned above.

References

[Kim95] Kim, K.H., Mori, K., and Nakanishi, H., "Realization
of Autonomous Decentralized Computing with the RTO.k object
Structuring Scheme and the HU-DF Inter-Process-Group
Communication Scheme", Proc. ISADS ‘95 (IEEE Computer
Society’s 2nd Int’l Symp. on Autonomous Decentralized
Systems), Phoenix, AZ, April 1995, pp.305-312.
[Kim97] Kim, K.H., "Object Structures for Real-Time Systems
and Simulators", IEEE Computer, August 1997, pp.62-70.
[Kim99] Kim, K.H., Ishida, M., and Liu, J., "An Efficient
Middleware Architecture Supporting Time-Triggered Message-
Triggered Objects and an NT-based Implementation", Proc.
ISORC '99 (IEEE CS 2nd Int'l Symp. on OOReal-time
distributed Computing), May 1999, pp.54-63.
[Kim00] Kim, K.H., "APIs for Real-Time Distributed Object
Programming", IEEE Computer, June 2000, pp.72-80.
[Kim02] Kim, K.H., "Commanding and Reactive Control of
Peripherals in the TMO Programming Scheme", Proc. ISORC
2002 (IEEE CS 5th Int'l Symp. on OO Real-time distributed
Computing), Washington, D.C., April 2002, p. 448-456.
[Kop97] Kopetz, H., 'Real-Time Systems: Design Principles for
Distributed Embedded Applications', Kluwer Academic
Publishers, ISBN: 0-7923-9894-7, Boston, 1997.
[Mol01] Molina, P.J., Pastor, O., Marti, S., Fons, J.J., and
Insfram, E. “Specifying conceptual interface patterns in an
object-oriented method with automatic code generation”, Proc.
User Interfaces to Data Intensive Systems (UIDIS), 2001,
Zurich, Switzerland, May 2001, pp72-79.
[Mor82] Mori, K. and Ihara, H., “Autonomous Decentralized
Loop Network”, Proc. IEEE CS COMPCON, Spring 1982, pp.
192-195
[Mor86] Mori, K., et. al., "Autonomous Decentralized Software
Structure and Its Application.", Proc. Fall Joint Computer
Conference, Dallas, Texas, November 1986, pp. 1056-1063.
[Nie00] Niemann, M., and Bardohl, R., “Tool-Based
Specification of Visual Languages and Graphical Editors”,
Proc. 6th Int'l Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2000), Berlin,
Germany, March 2000.
[OMG01] Object Management Group, “UML Profile for
Schedulability, Performance, and Time revised submission”,
OMG Document No. ad/01-06-14, June 2001.
[OMG02] Object Management Group, "Chapter 24. Real-time
CORBA", in CORBA Specification, Version 2.6.1,
http://www.omg.org/technology/documents/formal/
corba_2.htm, May, 2002.
[Pro99] Prosise, Jeff, 'Programming Windows with MFC', 2nd
Edition, Microsoft Press, Redmond, 1999.
[Ros02] Rational Software Corporation,
http://www.rational.com/
[Sch00] Douglas C. Schmidt and Fred Kuhns, “An Overview of
the Real-time CORBA Specification”, IEEE Computer, June
2000, pp. 56-63.
[Sel00] Selic, B., “A Generic Framework for Modeling
Resources with UML”, IEEE Computer, June 2000, pp. 64-69.
[Sof] Softwire Technology, "Softwire - Graphical Programming
for Visual Studio .Net", white paper in
http://www.softwire.com/media/pdfs/white-1.pdf .
[TMO02] DREAM Lab, University of California , Irvine, “TMO
Programming Manual”, http://dream.
eng.uci.edu/ece147/serious.htm.

Proceedings of the Sixth International Symposium on Autonomous Decentralized Systems (ISADS’03)

0-7695-1876-1/03 $17.00 © 2003 IEEE

